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COMPUTING STATIONARY POINTS, AGAIN

by

B. Curtis Eaves

1. Introduction and Abstract

~~~Given a nonemp~~~~~~~ ~~~~~~~~~~~~~~~~~ ~-M~-.-~h

‘
~
—‘
> with an affine ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -.R~~~we con-

sider (existence and) computation , in a finite number of steps, of

*
a stationary POiflt.\ A point x in °)(.. is defined to be a

stat1onary~~~~~~~~ .) (
~~, ~

) if x ~(x*) > x~ ~
‘(x~ ) for all x

in ‘k . ~~The existence and computation of stationary points is, in
particular , central to the solution of certain quadratic programs ,

matrix games, and economic equilibrium problems. Computing a

stationary point e~ (‘X, >~~ 
is equivalent to solving the linear

complementary problem

/ C AT\ /x\ /c\ /~i

I I I  I + (  ~~— (
\—A 0 / \ A /  \a/ \s

(1)

x > O  A > O  ~~> O  s > O

X 3~~~ A . s~~~O

*in the sense that if x is a stationary point, then there is an

(x*, A , ~i , s) solving (1), and reversely, if (x, A , ~i , s) solves

(1), then x is a stationary point. JU$T(FICATjQ~ 
D

_ _ _ _ _ _ _ _ _ _p.- Dist. AV~~ ~~~ VfCI~

-1- ~~~~~~~~~~~~~~

- -s
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Towards descr ibing o~ir result, let x° be any extreme point

of ~%. . Consequently, there is a submatrix (L, L) of n rows of

the matrix .

(
~ 

:)

such that Lx° L and L is nonsingular. For any such L let

p LT~ where ~ is any positive vector. We shall use the family

of stationary problems (~~, ~~) where ~ 0(x) ~ ç(~) + Op and

O > 0 in order to solve the stationary problem (%, ~~
) 

~~ , ~~).

Observe that x° is a stationary point of (‘v, ç0) for all

sufficiently large 0; let e
0 be the smallest such 0.

Define a piecewise linear path to be a function from [0, + ~
)

to R~ that is af fine on each element of a finite closed cover of

[0, + °). The following theorem captures the principal result.

Theorem: Lemke’s algorithm computes a piecewise linear path (X, 0)

such that x(O) x0, 0(0) 0°, X(t) is a stationary point of

~~~ ~0(t)~ 
for all t, and either 0(t) 0 for some t or X(t)

tends to infinity. L~J

In our previous study [2] a similar result was developed , however,

there the algorithm operated by perturbing ~~ rather than ~ . There ~

was of form {x : Ax < a), ~ was not required to have an extreme point, and

the path could be initiated anywhere in . Nevertheless, the present

scheme should be more effective if applicable, namely, if ~
( lies in the

nonnegative orthant and the algorithm is to be initiated at an extreme point.
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Although Mylander [4; Ch 4] was studying quadratic programming

(C was assumed symetric) under a nondegeneracy condition and from a

perspective of parametrizing the feasible region (~~ 
was deformed via

% (~ {e x < 0)) rather than the objective, much, or perhaps all, of the

Theorem can be extracted from his proof . In [1; § 11] it is shown that

Lemke ’s algorithm can be used to compute (x, , 0 , 0) so that x + tx

is a stationary point of (% , ~~(6 + t 0))  for all t > 0 where 6 0

or x # 0; here both and were parametrized . 
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2. A Special Case

In this section we assume x° is the origin and (L, £) = (1, 0),

and under these conditions vç prove the Theorem. Let p in

Rn be any positive vector and we apply Lemke’s algorithm (see [1] or

[3]) to the augmented linear complementary problem

/ C A~~ /x\ /c\ /p\ / ‘i \
( ) ( J + ( J + I J O = ( J
\—A 0 / \A/ \a/ \o/

(2)
I

x > O , A > 0 , p > O , s > 0 , 0 > 0

x •  p — A  s 0 .

Conceptually the first step of the algorithm is to perturb c and a

2 n n+l n+m
to c c+(c , c , ..., c )  and a

~~~~
a+(c , ..., c ) ,

respectively, where c is a positive infinitesmal; we obtain the per-

turbed augmented linear complementary problem:

( C A~
\ 
(x~ + (c~~\ (P~

\—A 0 / \x /  \a
~ / 

\o/
(2 ,t)

I

x > 0 , A > O , p > O , s > O , 0 > 0

x • p A .  s 0

Clearly (x, A , p, s, 6) — (0, 0, c
~ 
+ ep, a 0) for

all sufficiently large 0 forms a ray of solutions to (2,c); this

ray is referred to as the primary ray
.4
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The initial solution (x~, A
0, p~ , s~ , O~) is generated by

selecting the element of the primary ray with the smallest possible 0.

Henceforth we assume that O~ is positive for if 0, the path of the

Theorem is trivially obtained by setting (X(t), 0(t)) (0, 0) for all t.

Beginning with the initial solution, Leinke’s algorithm complementary

pivots and generates a sequence of solutions (x’, A
1
, p

1
, s~ , Ø

i)
£ £ £ C C

i — 1, . . . ,  k for (2,c). Each component of each solution is a poly—
n+m k

nomial of form ~ ~~~~ The algorithm terminates if 0 0 or if
0

a ray is encountered. Such a ray is referred to as the secondary ray

and has at most one point in common with the primary ray.

By x~ we denote the quantity x where c has been set to

zero, etc. First let us define the function (X, A , M, S, 8) on

[0, k] by setting (X, A , M, S, 0)(t) — (xc, A~ , p~ , s~ , O~
) for

t — 0 , 1, . . . ,  k and by extending it af finely on [i , i + 1] for

i — O , ..., k— l .

If the algorithm terminates with 0’~ — 0 we obtain a path of

solutions to (2) with 0(k) — 0 by extending (X, A , M, 5, 0) con-

stantly on [k, + ~) , and we obtain, in particular, the path (X, 0)

of the Theorem.

So now let us assume the algorithm terminates on a secondary

ray. This ray of solutions to (2,c) will have the form

with t > 0 where (i , 3~ j i, ~, 
~~~

). # 0, (x~, A
k, , ~) # 0, and

/ C AT\ I~ \ /p\ -

(3) 1 I ( . 1  ~1 1 ~ I
\—A 0/ \A/ ~0f

5
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Our task is now to show that x # 0. Suppose x — 0 and

— 0, then > 0, then, using A • s — 0, we get A 0 and

Ak — 0 which contradicts a property of a secondary ray. So now

let us suppose that x — 0 and x~ # 0. We have e — 0,

A • Axk + A = A • a , and x1~ • - x~ • C~ - x~ ATX = xk •

Combining the last two expressions, using p • x = 0, s A 0, and

- 0 we have ~ a~ x~ x~ - p0 . Hence, A = 0 and ~ 0 or

(i, X~ j, ~, ~) = 0 which is again a contradiction. We may conclude

that x t~ 0. A path of solutions to (2) with X(t) tending to infinity

is obtained by extending (X, A , M, S, 8) to [0, + ~) by setting

(X , A , M, S, 8)(t)

k k k k k= (x0, A0, p0, 5o’ eo)

+ (t — k)(~ , ~, j , ~, ~)

for t > k. In particular, (X, 0) is the path of the Theorem.

6
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3. Overview of Transformation

We shall prove the Theorem by transforming the general case into

the special case of the previous section. Here we give an overview of

the transformation used.

Consider the stationarity problem (
~% ,~~) in Rn and let

~‘~(x) Lx + t be a one to one af fine transformation from R” to R~.

Let qC — ~r(~~) and ~ (x) — ~x + ~ where C ~ L
iT CL 1

,

c ~ L
1T 

c — Ct, and T denotes transpose.

Leum~a 1: x~ is a stationary point of ~~~~~~~~ if and only if x

is a stationary point of (~~, ~ )

* * *Proof: x~~ (Gx + c ) > x  (Cx +c) for all x in ‘~~, 1f and only if

(L 1
(i — L)) • (C(L 1(i* — t ) )  + c) > L l

(* — t ) )  (C(C1Gc
* — t ) )  + c

for all i in~~~ ~

Note that the lemma does not require any assumptions on ~~~~., the

subset of Rn. An interesting case of Lemma 1 is obtained when L is

orthogonal; namely, when CiT — L.

7
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4. The General Case

Here we prove the Theorem for general (~~, 
~
‘) by using a

transformation as described in Section 3 to obtain the special case of

Section 2.

For a matrix B we denote by B and B the submatrix
•1

of rows and columns, respectively , indexed by y; if B is a vector

we drop the dot. Let B be a subset of {l, . . . ,  m + n} of size m

and let a be the complement of B where A is m x n.

0 0 0Given the extreme point x of A. let $ — a - Ax . We

say that B is a basis index yielding (x°, ~
0) if (A, 1)

8 
has an

inverse and

0 0

- 

(:°)a
= °  (:o)= (A, I):

~~
a .

Observe that B is a basis index yielding (x°, s°) if and only if

0 / 0
i i x — ~~~
\-A / a

and (
~

) is nonsingular. Using the simplex method if necessary ,

select any such a and B.

Define the map ~
‘ by ~‘(x) — 

(x) (a~~x )  
— Lx + £

where

/I \  /0
L~~~~( J and L~~~~(

a

8 
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Clearly is a one to one af fine map from ‘~~ to ~~ where

A ~ (A, I)~~ (A, ~~•a

a~~~(A, I)~~~a

It is important to note that ~ > 0 and ~ (x
0) 0. We form the

stationary problem (‘5(,~~
) by setting

~~(x) ~ Cx + c

C ~~ L
iT CL 1

- iT -
c~~~L c - C t

Let p be any positive vector and set p ~ L
T 
p. Define

~ ~(x) + Op and 
~ 8(x) ~ ~(x) + Op. Of course , Lemma 1

applies to the two systems (~%, ~~) and (°~~, ~~~
); furthermore,

> 0 and ~ ~~
‘(x°) — 0, hence, the special case of Section 2

applies to ~~~~~ with the extreme point x° = 0.

Now consider the analogue of (2) for (‘~~, ~~~ ) ,  namely

- 

/ ~(~) I - I l — I  + ( _ )  + ( J O — ~
\—A 0 FVA ! \a/ \0,

i!~o 1 > 0  p > 0  s > 0

i • j — o  ~~~~~~

9
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For this particular type transformation ~~
“
, Lemma 2 strengthens

Lemma 1.

Lemma 2: (x, A , ji, s, 0) solves (2), if and only If (x, A , ~, s, 0)
solves (2) where

/ x~ /3j~~ /14~~ /xi — (  I X — (  ) i~ _ (  ~ s — I

B

Proof: We represent (2) with the schema

x > O  1 > 0  
~~> 0  s > 0  0 > 0

-c AT o -
~~

A 0 0 I 0 a

x • p • s 0

After regrouping the variables we get the next system which has

the same solutions (x, A , i , s, 0).

~~~~~~

•

- ---—- a - .  :I:: :~T~~~~~~~~~~ . j



I .~ ° f  1 > 0 1  1 > 0 1 1 > 0  8 > 0

(_C
~

O) .a (I,_AT). 
~ 

LT (-C,O)
8 

C

(A ,I) 0 0 (A,I)
8 °

~~~~~~~~~~

j

~~~~~~~~~~~~~~~~~~~~~

/X \  /P \ / I i \ /X\

I ) • (  1 = 0  ( ) - (  1 = 0
‘~~~ ct \ A / a \ A / 8 ‘~~‘8

Now block pivot on (A, 1)
8 

to get the next system which also

has the same solutions (x, A , p, s, 0).

0 > 0

T T
(1,—A L 0 —p

+(C ,0) 8 ~

A 0 0 I 0

; . ; —
~~ ~~~~~~~~~

~~~ O8~ 
(
~ 

=
~

ii

. .  _ _  _ _



Premultiply the top row by L~~
T to get the schema for (2) which has

the same solutions (x, A , ii , ;, 0)

• ;> o ~~~~~~ ~~~~~~

- -T - -
— C  —A I 0 —p c

A 0 0 I 0 a

Thus we apply Lemke’s algorithm to (2) and according to Section 2

we get a piecewise linear path (X, A , M, S, 0) of solutions with

X(t) — 0, and either 0(t) = 0 for some t or k (t) tends to

infinity as t does. Letting X(t) ~~~~X(t)) the path (X, 0) is

that of the Theorem. Or , in more detail , we can get the path of

solutions (X, A , M, S, 0) to (2) by setting

/ x \  -I I — x  ( ) — s
\S I a

I I — M  ( J — A
\ A I B



5. An Example

Consider the stationarity problem ~~~~~ def ined by

/—l —1 —l

i .-i. 0

0 1 4

/1 —2 0\
(C, c)= ( I

\ ] .  — l — 1 /

The region is shown in Figure 1.

13
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Assuming x0 — (0, 2) we get a — {1, 3), 8 — {2, 4, 5),

p — LT ~ — (2, 1) and (L, £) 
(~ ~ 

where p — (1, 1). The

system (2) can be expressed as (4).

____ 

X
2 

A~ _____ 
1
3 

0

—1 1 1 1 —l 0 i 0 0 0 —1 —1

(4) —i —l 0 0 0 0 0

_

i 0 0 0 —1

1 —l 0 0 0 0 0 0 1 0 0 0

0 1 0 0 0 0 0 0 0 1 0 4

The algorithm can be executed by pivoting sequentially on this matrix of

(4) at positions (2, 3), (3, 2),  (2 , 11), (5, 8), (1, 5), (1, 1), (4, 10),

(4 , 4) ,  and (2 , 5). The path (X, 0) generated is defined by

t X(t) 8(t)

0 0, 1 2

1 0, 4 5

2 0, 4 4

3 2 , 4 3

4 2 , 2 1

5 4,4 i4
6 4, 4 0

and X is displayed in Figure 2. 

- . 

~~~~~~~~ 

.15 —•_ —
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x(3)
X( 1) = X (2  , , X( 5) —X(6)

- 

~~
- - — — - - i ‘7I I

I I

I ‘7
I +
I 

I

X(4)

X(0)

figure 2

a
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After pivoting on positions (2 , 3) and (3, 2) of the matrix

of (4) and rearranging the variables according to Lemma 2, we get the

system (2).

I .

J & 

17
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6. Appendix

This section demonstrates that the involvement of a degeneracy

discussion in Section 2 was necessary in order to cover the possibility

that it might contain some zeros.

Consider the application of Lemke’s algorithm to the augmented

linear complementary problem.

Bz + q + pe — w

z > 0  v > 0  0 > 0  z w 0

In order to initiate the algorithm one needs (p, q) lexico non-

negative row by row. However, if (p, q) is merely lexico non-

negative and not iexico positive, then Lemke’s algorithm may terminate

on a ray that is Identical to the primary ray after the perturbat ion

is dropped. To illustrate this point, consider the data

/0 0\ /-.l \ /1\
B — (  1 q — (  I ~~— (  I

\ of \0/

and perturb q to q (—1 + c, £
2
).

Lemke’s algorithm begins with the solution (w, z, 0)

— (0, ~
2
, 0, 0, 1 — c), iterates through the solutions

(0, 0, £2, 0, 1 — c) and (0, 0, 0, £2, i — c) , and terminates with

the ray of solutions (0, 0, 0, ~
2
, ~ — t)  + t(l, 0, 0, 0, 1) with

t > 0. Upon dropping the perturbation we see that the secondary ray

of the perturbed problem becomes the primary ray of the original problem .

18
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